3.7.8 \(\int \frac {\sqrt {a+b \cos (c+d x)}}{\cos ^{\frac {7}{2}}(c+d x)} \, dx\) [608]

Optimal. Leaf size=329 \[ \frac {2 (a-b) \sqrt {a+b} \left (9 a^2-2 b^2\right ) \cot (c+d x) E\left (\text {ArcSin}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{15 a^3 d}-\frac {2 (a-b) \sqrt {a+b} (9 a+2 b) \cot (c+d x) F\left (\text {ArcSin}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{15 a^2 d}+\frac {2 \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {2 b \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{15 a d \cos ^{\frac {3}{2}}(c+d x)} \]

[Out]

2/5*sin(d*x+c)*(a+b*cos(d*x+c))^(1/2)/d/cos(d*x+c)^(5/2)+2/15*b*sin(d*x+c)*(a+b*cos(d*x+c))^(1/2)/a/d/cos(d*x+
c)^(3/2)+2/15*(a-b)*(9*a^2-2*b^2)*cot(d*x+c)*EllipticE((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),((-
a-b)/(a-b))^(1/2))*(a+b)^(1/2)*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/a^3/d-2/15*(a-b)*
(9*a+2*b)*cot(d*x+c)*EllipticF((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),((-a-b)/(a-b))^(1/2))*(a+b)
^(1/2)*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/a^2/d

________________________________________________________________________________________

Rubi [A]
time = 0.42, antiderivative size = 329, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {2875, 3134, 3077, 2895, 3073} \begin {gather*} -\frac {2 (a-b) \sqrt {a+b} (9 a+2 b) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} F\left (\text {ArcSin}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{15 a^2 d}+\frac {2 (a-b) \sqrt {a+b} \left (9 a^2-2 b^2\right ) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} E\left (\text {ArcSin}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{15 a^3 d}+\frac {2 b \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{15 a d \cos ^{\frac {3}{2}}(c+d x)}+\frac {2 \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{5 d \cos ^{\frac {5}{2}}(c+d x)} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + b*Cos[c + d*x]]/Cos[c + d*x]^(7/2),x]

[Out]

(2*(a - b)*Sqrt[a + b]*(9*a^2 - 2*b^2)*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqr
t[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b
)])/(15*a^3*d) - (2*(a - b)*Sqrt[a + b]*(9*a + 2*b)*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sq
rt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c +
d*x]))/(a - b)])/(15*a^2*d) + (2*Sqrt[a + b*Cos[c + d*x]]*Sin[c + d*x])/(5*d*Cos[c + d*x]^(5/2)) + (2*b*Sqrt[a
 + b*Cos[c + d*x]]*Sin[c + d*x])/(15*a*d*Cos[c + d*x]^(3/2))

Rule 2875

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si
mp[(-b)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*((c + d*Sin[e + f*x])^n/(f*(m + 1)*(a^2 - b^2))), x] + Dist[
1/((m + 1)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n - 1)*Simp[a*c*(m + 1) + b*d*
n + (a*d*(m + 1) - b*c*(m + 2))*Sin[e + f*x] - b*d*(m + n + 2)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d
, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1] && LtQ[0, n, 1] && In
tegersQ[2*m, 2*n]

Rule 2895

Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[-2*(
Tan[e + f*x]/(a*f))*Rt[(a + b)/d, 2]*Sqrt[a*((1 - Csc[e + f*x])/(a + b))]*Sqrt[a*((1 + Csc[e + f*x])/(a - b))]
*EllipticF[ArcSin[Sqrt[a + b*Sin[e + f*x]]/Sqrt[d*Sin[e + f*x]]/Rt[(a + b)/d, 2]], -(a + b)/(a - b)], x] /; Fr
eeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && PosQ[(a + b)/d]

Rule 3073

Int[((A_) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.)
+ (f_.)*(x_)]]), x_Symbol] :> Simp[-2*A*(c - d)*(Tan[e + f*x]/(f*b*c^2))*Rt[(c + d)/b, 2]*Sqrt[c*((1 + Csc[e +
 f*x])/(c - d))]*Sqrt[c*((1 - Csc[e + f*x])/(c + d))]*EllipticE[ArcSin[Sqrt[c + d*Sin[e + f*x]]/Sqrt[b*Sin[e +
 f*x]]/Rt[(c + d)/b, 2]], -(c + d)/(c - d)], x] /; FreeQ[{b, c, d, e, f, A, B}, x] && NeQ[c^2 - d^2, 0] && EqQ
[A, B] && PosQ[(c + d)/b]

Rule 3077

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*s
in[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist[(A - B)/(a - b), Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e
+ f*x]]), x], x] - Dist[(A*b - a*B)/(a - b), Int[(1 + Sin[e + f*x])/((a + b*Sin[e + f*x])^(3/2)*Sqrt[c + d*Sin
[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2
 - d^2, 0] && NeQ[A, B]

Rule 3134

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*s
in[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 - a*b*B + a^2*C))*Cos[e
+ f*x]*(a + b*Sin[e + f*x])^(m + 1)*((c + d*Sin[e + f*x])^(n + 1)/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2))), x] + D
ist[1/((m + 1)*(b*c - a*d)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[(m + 1)*
(b*c - a*d)*(a*A - b*B + a*C) + d*(A*b^2 - a*b*B + a^2*C)*(m + n + 2) - (c*(A*b^2 - a*b*B + a^2*C) + (m + 1)*(
b*c - a*d)*(A*b - a*B + b*C))*Sin[e + f*x] - d*(A*b^2 - a*b*B + a^2*C)*(m + n + 3)*Sin[e + f*x]^2, x], x], x]
/; FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&
LtQ[m, -1] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !(IntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n]
&&  !IntegerQ[m]) || EqQ[a, 0])))

Rubi steps

\begin {align*} \int \frac {\sqrt {a+b \cos (c+d x)}}{\cos ^{\frac {7}{2}}(c+d x)} \, dx &=\frac {2 \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {2}{5} \int \frac {\frac {b}{2}+\frac {3}{2} a \cos (c+d x)+b \cos ^2(c+d x)}{\cos ^{\frac {5}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx\\ &=\frac {2 \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {2 b \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{15 a d \cos ^{\frac {3}{2}}(c+d x)}+\frac {4 \int \frac {\frac {1}{4} \left (9 a^2-2 b^2\right )+\frac {7}{4} a b \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx}{15 a}\\ &=\frac {2 \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {2 b \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{15 a d \cos ^{\frac {3}{2}}(c+d x)}-\frac {((a-b) (9 a+2 b)) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}} \, dx}{15 a}-\frac {\left (-9 a^2+2 b^2\right ) \int \frac {1+\cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx}{15 a}\\ &=\frac {2 (a-b) \sqrt {a+b} \left (9 a^2-2 b^2\right ) \cot (c+d x) E\left (\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{15 a^3 d}-\frac {2 (a-b) \sqrt {a+b} (9 a+2 b) \cot (c+d x) F\left (\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{15 a^2 d}+\frac {2 \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {2 b \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{15 a d \cos ^{\frac {3}{2}}(c+d x)}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 13.10, size = 453, normalized size = 1.38 \begin {gather*} \frac {8 \cos ^2\left (\frac {1}{2} (c+d x)\right )^{7/2} \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \sqrt {\cos (c+d x) \sec ^2\left (\frac {1}{2} (c+d x)\right )} \left (-2 \left (9 a^3+9 a^2 b-2 a b^2-2 b^3\right ) \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \sqrt {\frac {a+b \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} E\left (\text {ArcSin}\left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {-a+b}{a+b}\right )+2 a \left (9 a^2+7 a b-2 b^2\right ) \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \sqrt {\frac {a+b \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} F\left (\text {ArcSin}\left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {-a+b}{a+b}\right )-\left (9 a^2-2 b^2\right ) \cos (c+d x) (a+b \cos (c+d x)) \sec ^2\left (\frac {1}{2} (c+d x)\right ) \tan \left (\frac {1}{2} (c+d x)\right )\right )}{15 a^2 d \cos ^{\frac {3}{2}}(c+d x) (1+\cos (c+d x))^{3/2} \sqrt {a+b \cos (c+d x)}}+\frac {\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)} \left (\frac {2 \sec (c+d x) \left (9 a^2 \sin (c+d x)-2 b^2 \sin (c+d x)\right )}{15 a^2}+\frac {2 b \sec (c+d x) \tan (c+d x)}{15 a}+\frac {2}{5} \sec ^2(c+d x) \tan (c+d x)\right )}{d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a + b*Cos[c + d*x]]/Cos[c + d*x]^(7/2),x]

[Out]

(8*(Cos[(c + d*x)/2]^2)^(7/2)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[Cos[c + d*x]*Sec[(c + d*x)/2]^2]*(-2*
(9*a^3 + 9*a^2*b - 2*a*b^2 - 2*b^3)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(a + b*Cos[c + d*x])/((a + b)*(
1 + Cos[c + d*x]))]*EllipticE[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)] + 2*a*(9*a^2 + 7*a*b - 2*b^2)*Sqrt[C
os[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticF[ArcSin[Tan[(
c + d*x)/2]], (-a + b)/(a + b)] - (9*a^2 - 2*b^2)*Cos[c + d*x]*(a + b*Cos[c + d*x])*Sec[(c + d*x)/2]^2*Tan[(c
+ d*x)/2]))/(15*a^2*d*Cos[c + d*x]^(3/2)*(1 + Cos[c + d*x])^(3/2)*Sqrt[a + b*Cos[c + d*x]]) + (Sqrt[Cos[c + d*
x]]*Sqrt[a + b*Cos[c + d*x]]*((2*Sec[c + d*x]*(9*a^2*Sin[c + d*x] - 2*b^2*Sin[c + d*x]))/(15*a^2) + (2*b*Sec[c
 + d*x]*Tan[c + d*x])/(15*a) + (2*Sec[c + d*x]^2*Tan[c + d*x])/5))/d

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(1554\) vs. \(2(297)=594\).
time = 0.29, size = 1555, normalized size = 4.73

method result size
default \(\text {Expression too large to display}\) \(1555\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*cos(d*x+c))^(1/2)/cos(d*x+c)^(7/2),x,method=_RETURNVERBOSE)

[Out]

-2/15/d*(9*cos(d*x+c)^3*sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(
1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*a^3-9*cos(d*x+c)^3*sin(d*x+c)*(cos(d*x+c)/(1+c
os(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(
a+b))^(1/2))*a^3+2*cos(d*x+c)^3*sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/
(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*b^3+9*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2
)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*cos
(d*x+c)^2*sin(d*x+c)*a^3-9*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*Ell
ipticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*cos(d*x+c)^2*sin(d*x+c)*a^3+2*(cos(d*x+c)/(1+cos(d*x+c
)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1
/2))*cos(d*x+c)^2*sin(d*x+c)*b^3+2*cos(d*x+c)^3*sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))
/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*a*b^2+7*(cos(d*x+c)/(1
+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)
/(a+b))^(1/2))*cos(d*x+c)^2*sin(d*x+c)*a^2*b-2*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+
c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*cos(d*x+c)^2*sin(d*x+c)*a*b^2-2*co
s(d*x+c)^4*b^3+9*cos(d*x+c)^3*a^3+2*cos(d*x+c)^3*b^3-6*cos(d*x+c)^2*a^3-3*a^3-9*cos(d*x+c)^2*sin(d*x+c)*(cos(d
*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c)
,(-(a-b)/(a+b))^(1/2))*a^2*b+2*cos(d*x+c)^2*sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+
cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*a*b^2+7*cos(d*x+c)^3*sin(d
*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c)
)/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*a^2*b-2*cos(d*x+c)^3*sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos
(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*a*b^2-9*cos(d*
x+c)^3*sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-
1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*a^2*b-5*cos(d*x+c)^3*a^2*b-2*cos(d*x+c)^3*a*b^2+cos(d*x+c)^2*a*
b^2-4*cos(d*x+c)*a^2*b+9*cos(d*x+c)^4*a^2*b+cos(d*x+c)^4*a*b^2)/(a+b*cos(d*x+c))^(1/2)/sin(d*x+c)/cos(d*x+c)^(
5/2)/a^2

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^(1/2)/cos(d*x+c)^(7/2),x, algorithm="maxima")

[Out]

integrate(sqrt(b*cos(d*x + c) + a)/cos(d*x + c)^(7/2), x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^(1/2)/cos(d*x+c)^(7/2),x, algorithm="fricas")

[Out]

integral(sqrt(b*cos(d*x + c) + a)/cos(d*x + c)^(7/2), x)

________________________________________________________________________________________

Sympy [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: SystemError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))**(1/2)/cos(d*x+c)**(7/2),x)

[Out]

Exception raised: SystemError >> excessive stack use: stack is 4369 deep

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^(1/2)/cos(d*x+c)^(7/2),x, algorithm="giac")

[Out]

integrate(sqrt(b*cos(d*x + c) + a)/cos(d*x + c)^(7/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {\sqrt {a+b\,\cos \left (c+d\,x\right )}}{{\cos \left (c+d\,x\right )}^{7/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*cos(c + d*x))^(1/2)/cos(c + d*x)^(7/2),x)

[Out]

int((a + b*cos(c + d*x))^(1/2)/cos(c + d*x)^(7/2), x)

________________________________________________________________________________________